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Temporal receptive field estimation using wavelets
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Abstract

A standard goal of many neurophysiological investigations is to obtain enough insight into a neuron’s behavior that it becomes possible to predict
responses to arbitrary stimuli. Techniques have been developed to solve this system identification problem, and the numerical method presented here
adds to this toolbox. Stimuli and responses, beginning as functions of time, are transformed to complex-valued functions of both time and temporal
frequency, giving amplitude and phase at each frequency and time point. The transformation is implemented by wavelets. The kernel describing
the system is then derived by simply dividing the response wavelet by the stimulus wavelet. The results are averaged over time, incorporating
median filtering to remove artifacts. Estimated kernels match well to the actual kernels, with little data needed. Noise tolerance is excellent, and
the method works on a wide range of kernels and stimulus types. The algorithm is easy to implement and understand, but can be applied broadly.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Numerous methods for extracting information about how
a neuron might respond to arbitrary stimuli have been devel-
oped. Marmarelis and Marmarelis (1978) inspired much of this
by introducing Wiener kernel analysis to neuroscience. The
field has been dominated by methods that work in the time or
space (or the tonotopic axis in the auditory system, the spatial
dimension along the cochlear receptor surface) domains. Fre-
quency domain approaches have nonetheless provided important
insights (French, 1976; Victor, 1979; Victor and Shapley, 1979;
Christakos et al., 2004; Luczak et al., 2004; Nishimoto et al.,
2006).

Wavelets (or alternatives such as Wigner transforms) pro-
vide a hybrid approach (Torrence and Compo, 1998; Soucek
et al., 2004). Wavelet transforms create time–frequency repre-
sentations, with optimal localization in each domain. A method
that uses wavelets can predict first-order kernels under a wide
range of conditions. First, starting with known kernels, numer-
ical computations demonstrate that they can be reconstructed
rapidly from presentation of several kinds of noise stimuli, with
excellent tolerance when responses have additive noise. Second,
results are presented from testing visual neurons for which the
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kernels are unknown a priori, comparing the wavelet analysis
with conventional methods.

Only temporal analyses are treated here. Spatial aspects take
the simplest form, as temporal response profiles are derived
independently at each position. The underlying reason for this
choice is that neuronal inputs are localized in space, in that they
have compact spatial receptive fields. However, the methods
described below could be applied to experiments where spa-
tial receptive fields need to be derived from spatially extended
stimulation (Enroth-Cugell and Robson, 1966; Aertsen and
Johannesma, 1981; deCharms et al., 1998; Depireux et al., 2001;
David et al., 2004; Prenger et al., 2004).

Neurons are driven by multiple inputs. Responses from
neurons, or from the whole retina in the case of multifo-
cal electroretinography (Sutter, 2001), for example, represent
some additive combination of signals from spatially separated
receptive fields. One can simultaneously measure the temporal
properties at each spatial position by presenting noise stimuli
that are statistically independent across space. From the point
of view of any given position, the total response looks like the
response evoked by the stimulus at that position, plus noise from
the activity generated from all of the other positions. Analysis
methods that extract temporal kernels in the presence of noise
are therefore needed.

The goal of this report is to illustrate the ease with which neu-
rophysiologists can implement a method that permits extraction
of system kernels under a wide variety of situations. The use of
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wavelets neither optimizes systems identification nor provides
clean analytic tools for treating theoretical issues. The demon-
strations here are strictly numerical, and the focus is pragmatic.

2. Methods

2.1. Wavelet correlations: non-technical summary

The goal of systems analysis is to estimate how a system
converts arbitrary inputs into outputs, often in the interest of dis-
cerning mechanisms. In the present case, I obtained responses of
model and neuronal systems to controlled stimuli, and derived
estimates of the systems’ structures by correlating the stim-
uli and responses. These correlations were performed after
transforming both stimuli and responses into time–temporal fre-
quency representations, using a wavelet transform. At each time
bin, a stimulus and its corresponding response contain ampli-
tudes and phases at each of a range of temporal frequencies. The
correlation between the stimulus and response consists of divid-
ing the response by the stimulus. The results of these divisions
are then accumulated over time.

Inputs were taken as 5 s trials, to match the physiological
protocol described below. Inputs were samples of pseudoran-
dom noise. The noise was either white, with equal amplitude
across linear frequency bins, or natural, with amplitude skewed
toward low frequencies, which tends to have equal amplitude
over logarithmically spaced frequency bins.

The input was passed through a kernel (convolving with
the impulse response function or multiplying by the frequency-
domain filter; the former of these equivalent methods was used
below). This provided the linear response corresponding to the
input. In some cases this linear response was then modified by
a static nonlinear function to produce the final response. Noise
was also added in some cases. The response was a function of
time, over 5 s, just like the stimulus.

Stimulus and response were transformed by a complex Mor-
let wavelet. This is equivalent to a set of convolutions with Gabor
functions of varying frequencies. In standard terminology, this
yields complex functions of time and scale. Wavelet scales corre-
spond to reciprocals of temporal frequencies, and I will describe
the analyses in terms of frequency rather than scale. Fig. 1 (D,
F, G, and I) shows an example of the amplitude and phase com-
ponents of stimulus and response after wavelet transformation.
The vertical axis is temporal frequency, and the horizontal axis is
time. The response to this stimulus was computed by convolving
the stimulus with the kernel shown in black in Fig. 1B. Because
of the bandpass amplitude tuning of this kernel, responses to low
and especially high frequencies are attenuated. The kernel shifts
the phase, as can be noticed on inspection of the colors in the
phase plots in (G and I). Phase is given in cycles (H) throughout.

The original kernel can be reconstructed, therefore, by com-
paring the response and stimulus. The amplitude tuning of the
kernel is derived from the ratio of the response and stimulus
amplitudes, and the phase of the kernel from the difference of
the response and stimulus phases. These separate computations
are actually combined by taking the ratio of the complex num-
bers formed from the amplitude and phase pairs. For a linear

system, these comparisons are made at common frequencies in
stimulus and response, since linear systems do not evoke any
interactions across frequencies. In fact, the wavelet transform,
which is incompletely localized in both time and temporal fre-
quency, introduces overlap between nearby frequencies, causing
small errors. The time dimension amounts to a set of samples,
and a statistic must be used to compile the response/stimulus
comparisons across time. I computed the mean across time of
the amplitude/phase values at each frequency, in the complex
plane (Fig. 1J–M).

Nonlinear systems can produce interactions across frequen-
cies. For instance, a squaring or other multiplicative nonlinearity
leads to responses at sums and differences of the stimulus fre-
quencies. Because the wavelet representation encompasses a
wide range of frequencies, interactions can be computed at each
combination of these frequencies (Li et al., 2007). The present
study will be restricted to the linear computations.

2.2. Details of computation

For most of the results below, the frequency range used was
about 0.25–64 Hz. Step size was a quarter octave over these 8
octaves. These choices induce redundancy in the wavelet rep-
resentation, which has advantages and disadvantages, and is
standard practice (Soucek et al., 2004).

The full calculation consisted of iteratively repeating the fol-
lowing steps:

(1) (Fig. 1A and C) starting with stimulus and response arrays
that comprised 800 points in 6.25 ms steps;

(2) (Fig. 1D, F, G, and I) the stimulus and response are
transformed to time–frequency representations, using cal-
ibrations to map wavelet scales to temporal frequencies and
to determine wavelet amplitudes at each frequency;

(3) (Fig. 1J–M) the complex arrays of stimulus and response
values are divided;

(4) at each frequency, the amplitudes across time are median-
filtered to avoid spurious correlations, as discussed below;

(5) (Fig. 1J–M, green discs) a single complex value for the cor-
relation at each frequency is obtained by averaging across
time in the complex plane;

(6) (Fig. 1E and H, red curves) the resultant array of com-
plex values across frequencies are added to an estimate that
accumulates over trials, providing estimates of the kernel
temporal frequency tuning and timing;

(7) (Fig. 1B, red curve) a complex array that has the dimen-
sions of the Fourier transform of the original stimulus and
response arrays is filled with values interpolated from the
computed array from step 6, and this array is inverse Fourier
transformed to yield an impulse response function with
6.25 ms steps.

Stimuli can be arbitrary, but here consist of pseudorandom
noise of several types. The experimenter must know the stimu-
lus, either by generating it or recording it. The response to the
stimulus is assumed here to come about through a quasilinear
process. The system is described by a kernel that accounts for
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Fig. 1. Wavelet correlation procedure. The stimulus (A) was Gaussian white noise, and the response (C) was the linear transform of this stimulus by the filter shown
in (B) (black trace). In the amplitude plots in (D and F), the color scale ranges from black to yellow. In the phase plots in (G and I), the color cycles from black through
violet, blue, yellow, and red and back to black. The wavelet representation in (D, F, G, and I) provides amplitude and phase as a function of time and frequency. The
white dashed traces in (D and F) indicate the cone of influence. The kernel with the time domain shape in (B) has the frequency-domain representation shown in (E
and H), in black. The unit of phase here is cycles (c). The division in time–frequency space of response by stimulus yields a complex number at each frequency and
time. Examples at 4 frequencies are shown in (J–M), with the complex numbers displayed in the plane by an orange cross for each time point. The average of the
points in these graphs is shown as a green circle. The amplitude and phase values corresponding to these averages at each frequency are shown in (E and H) as the
red curves, with the 4 example frequencies marked with green circles. These frequency-domain results lead to the kernel estimate in (B) (red trace).

the linear portion of the stimulus-response relation. For many
neural systems, temporal kernels consist of smooth functions of
time (impulse responses) with durations less than several hun-
dreds of milliseconds. In the frequency domain, these kernels
are tuned to frequencies between 0.25 and 32 Hz, often with
bandpass tuning but sometimes with lowpass tuning, and have
an approximately linear relation between phase and frequency.
The slope of the phase vs. frequency line is a measure of latency,

which is typically less than hundreds of milliseconds. The phase
at low frequencies (absolute phase, the extrapolation of phase
to 0 Hz) determines the shape of the impulse response, and,
for example, whether the kernel leads to transient or sustained
responses to step stimuli: absolute phase leads nearing a quarter
cycle give transient responses and biphasic impulse responses,
whereas absolute phases near 0 cycles give sustained responses
and monophasic impulse responses.
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Model kernels in this study were constructed by selecting
values of 5 parameters that describe the kernel in the frequency
domain (I refer to this as a kernel for convenience; usually,
the frequency-domain version is called the modulation trans-
fer function): phase was given by ϕ0 + Lω, where ω is temporal
frequency, ϕ0 is absolute phase and L is latency, and amplitude
was given by e−1/2(ω/Ew)2 − Ia e−1/2(ω/Iw)2

, where Ew is excita-
tory width, Iw is inhibitory width, and Ia is inhibitory amplitude.
Ew varied between 4 and 20 Hz, Iw varied between 0.1 Hz and
Ew − 2 Hz, Ia varied between 0.05 and 0.99, absolute phase var-
ied over 1 cycle, and latency ranged from 30 to 200 ms. The
frequency domain and time domain versions of the kernel were
obtained from each other via Fast Fourier Transforms (FFTs) or
Inverse Fast Fourier Transforms (IFFTs).

Responses were obtained by convolving the stimulus s with
the system kernel k, k⊗s. In some cases, noise was then added to
the response, to investigate how well the kernel could be recon-
structed in the presence of noise. The response can be written
as r(t) = k⊗s(t) + ν(t), where ν is the additive noise. The stan-
dard way to obtain the kernel k is to convolve both sides with
s: r⊗s = (k⊗s)⊗s + ν⊗s. The convolutions (k⊗s)⊗s become the
kernel convolved with the stimulus autocorrelation, k⊗(s⊗s). If
the stimulus is white, its autocorrelation is a delta function, and
the convolution with the kernel is exactly the kernel. This cal-
culation is standard in neurophysiology, where it is termed the
spike-triggered average. If the stimulus is not white, however,
one needs to deconvolve its autocorrelation from the kernel.

Because the added noise ν is assumed to be uncorrelated
with the stimulus s, that term vanishes (uncorrelated means that
the convolution is zero). This leaves k⊗(s⊗s) = r⊗s, which can
be solved in the frequency domain, where r⊗s is transformed
to RS*, the product of the Fourier transforms of stimulus and
response (S* is the complex conjugate of S). For the conventional
“spike-based” reverse correlations below, stimulus and response
were transformed via FFTs, and the quotient K = RS*/SS* was
computed in the frequency domain, then an IFFT transformed
the result back to the time domain impulse response function.
Regularization was added by smoothing the power spectrum SS*
prior to the division, or by adding a regularizing parameter to
the power spectrum before dividing.

The wavelet transform (step 2 above) was implemented using
the CWT operation in Igor Pro 6 (WaveMetrics, Lake Oswego
OR). Similar algorithms are available in most recent numerical
analysis software, or could be coded based on descriptions such
as Vrhel et al. (1997). The continuous wavelet transform of a
function f(t) by a “mother wavelet” ψ is

F (ω, t) = √
ω

∫
f (τ)ψ∗(ω(τ − t)) dτ.

This wavelet representation is given in terms of temporal
frequency ω and time t, as used below. However, most imple-
mentations transform the one-dimensional input function to a
function of “scale” and time. Wavelet scales are reciprocals of
temporal frequencies (Torrence and Compo, 1998). The cor-
respondence between frequencies and scales was calculated
empirically for each set of parameters, via a calibration rou-
tine that also measured scaling of amplitudes, and the cone of

influence outside of which the wavelet-transformed values are
less reliable. The integral in the transform formula is taken over
the real line. However, the key is that the mother wavelet ψ has
particular properties, including effectively vanishing outside a
finite interval. I use the complex Morlet wavelet here, which is
a Gabor function:

ψ(u) =
(

1

π1/4

)
eiω0u e−u2/2,

in other words, a complex sinusoid windowed by a Gaussian. The
wavelet transform is a set of local Fourier transforms. Note that
the transformed signal is complex, with amplitude and phase. In
the application here, the phase values are key. The parameter ω0
is chosen to obtain a reasonable number of oscillations within the
Gaussian window, and a value of 5 is used below, except when
its variation is considered. The mother wavelet requires some
normalization in addition to that given here, which is obtained
numerically by the calibration routine. For the purposes of com-
puting correlations, however, the amplitude normalization is not
necessary, because of the division described next.

Having transformed the stimulus and the response, the rela-
tionship between them can be discovered by comparing their
relative amplitudes and phases. At each time and frequency, the
response is divided by the stimulus (step 3). Because the stim-
ulus amplitude (i.e. contrast) can be small at some points, this
division can lead to large quotient amplitudes if the response
depends on anything more than the stimulus itself (which occurs
for the cases of added noise and multi-input systems). In order
to avoid having these large artifacts skew the results, I eliminate
them by, at each frequency, comparing the ratios across times.
Because the 800 time points should, in principle, yield similar
amplitudes and phases at any given frequency, the outliers due
to low contrasts stand out. I used a median filtering algorithm
that looked for amplitudes exceeding the median by at least one
standard deviation over the 1250 ms interval surrounding each
point, and reset outliers to the median value (step 4).

The goal is to obtain a description of the system kernel. In
the frequency domain, that means having values of amplitude
and phase at each frequency. At this point, we still have 800
values of amplitude and phase at each frequency, and need to
perform some type of averaging across the 800 time points. If
amplitudes and phases were averaged separately, even a ran-
dom set of 800 complex numbers would be biased toward large
amplitudes, because amplitudes are non-negative. It is crucial
to measure how well the sample of complex numbers coheres,
that is, points in a definite direction in the plane. I simply calcu-
lated the mean of the 800 complex numbers in the plane (step
5), but one could instead compute other statistics such as the
mode. Because the wavelet transform is subject to edge effects,
I discarded time points near the beginning and end of each trial,
based on the cone of influence that is a function of frequency
(white dashed traces in Fig. 1D and F). My criterion for the
cone of influence was to include those points whose amplitudes
for a sinusoidal input were within one standard deviation of the
maximum amplitude at that frequency (the ratio of this criterion
amplitude to the maximum amplitude was 0.93 ± 0.01). This is
similar to the criterion given by Torrence and Compo (1998).
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At this point, one has the amplitude and phase at each fre-
quency, which was the goal. However, these apply to the current
trial, and should be combined with all of the other trials. I sim-
ply averaged the complex function of frequency across trials.
Alternatives exist, such as averaging all of the time points from
all of the trials, or forming a matrix whose rows describe the
frequency-domain responses for each trial or at each time point,
then performing principal components analysis and projection
onto a subspace (Schwartz et al., 2006). Finally, the kernel is
obtained for the entire run. The frequency-domain version can
be inverse Fourier transformed to give the impulse response
function that describes the system. In order to do this, a new
array must be created in the frequency domain, since the wavelet
frequencies are logarithmically spaced, and the IFFT expects
a linearly spaced array. One must guard against extrapolation
errors in the process of filling this array due to the typically
bandpass tuning, but also when tuning is non-monotonic at the
extremes. I set amplitudes at low and high frequencies to zero,
which creates inaccuracies, including edge effects that might be
reduced by using a smooth window.

For neuronal data, the response arrays were histograms of
spikes during the trial, with 6.25 ms bins. Because the his-
tograms have only non-negative values, they contain a strong
component at low frequencies that does not exist in the model
responses. These histograms were therefore subjected to a high-
pass filter, multiplying the amplitude in the frequency domain
by 1 − e−ω/0.4 in order to eliminate the DC and reduce the
very low frequency components. For some comparisons below,
I computed conventional “spike-based” reverse correlations as
well, using the method described above. Cells were tested at
multiple positions across space. These positions were always
tested independently and no dependencies were introduced by
the analysis methods. Simulations of multi-input neurons were
not performed because they are equivalent to the simulations of
single-input neurons with noise.

All work was performed in Igor Pro 6 (example code to regen-
erate the figures is available at http://www.igorexchange.com).
Neuronal data were obtained from recordings in awake behaving
rhesus monkeys (Macaca mulatta). Details of the animal care,
surgery, and recording setup are identical to those in Tang et
al. (2007). All procedures adhered to NIH guidelines and were
approved by the Animal Care and Use Committee of the Medical
College of Georgia. Monkeys performed a fixation task during
5 s trials, and stimulus position was adjusted based on signals
from an eye position monitor to compensate for fixational eye
movements (Tang et al., 2007). Stimuli were presented on a CRT
monitor at a frame rate of 160 Hz, accounting for the 6.25 ms
binwidth used throughout.

3. Results

I first address basic issues for these analyses, by examin-
ing first-order responses derived from linear transformations of
Gaussian white noise. Then, kernel estimates are derived in the
presence of response noise, for nonwhite inputs, and for recti-
fied responses. Finally, results of the analyses on real neurons
are shown.

3.1. Basic findings: convergence, accuracy, flexibility, noise
tolerance

Does the wavelet technique provide accurate estimates of sys-
tem kernels? How much stimulation time does it need to yield
adequate predictions? Are the estimates biased? Which parame-
ters affect accuracy? Can kernels be extracted in the presence of
noise? I address these questions by first considering simple sit-
uations where known linear systems are tested with white noise
stimuli. Repeated presentations of 5 s trials with Gaussian white
noise produced estimates that could be compared to the known
kernel.

Given enough time, most methods are capable of generat-
ing accurate estimates of system structures. Obtaining these
estimates after limited testing is one of the most important prac-
tical considerations. Wavelet correlations excelled on this score.
Predictions converged rapidly toward model systems. Typi-
cally, tens of seconds of stimulation were sufficient to approach
asymptotic points for first-order kernels. Examples are shown
in Fig. 2A. Predicted temporal frequency timing (phase) and
tuning (amplitude) and the corresponding impulse responses are
shown for the first 10 iterations. The earlier predictions (greenish
hues) are noisy but otherwise deviate little from the later pre-
dictions (bluish hues), so that they overlap almost completely
except in the amplitude plot. The estimate of the target phase
(black line) has small systematic errors. The deviation at high
frequencies, above 20 Hz, is associated with the low amplitudes
at those frequencies, however. Means and their standard errors
after 10 iterations are shown in (B). The estimated phase val-
ues are accurate, though with a smaller slope. The amplitude
estimates are less reliable. The impulse response is captured
well.

Arbitrary kernels were matched by this process. I generated a
variety of first-order kernels by randomly choosing parameters
that describe amplitude and phase as functions of temporal fre-
quency (described explicitly in Section 2 and below). Phase was
linear, with parameters of slope (latency) and intercept (abso-
lute phase). Amplitude was given by a difference of Gaussians
with 3 parameters, excitatory half-width, inhibitory half-width,
and the ratio of inhibitory to excitatory amplitudes. Fig. 3 shows
how kernels that differed only in absolute phase (the phase at
0 Hz) were estimated. Phase values shifted as expected, with all
estimates being close to the actual kernel phases at frequencies
between 2 and 10 Hz, where amplitudes were strongest. Tran-
sient kernels (±0.25 c) produced underestimates of amplitude
across moderate frequencies, and sustained kernels (±0.05 c)
produced overestimated amplitudes at low frequencies and
underestimated amplitudes at moderate frequencies. Latency
is shorter than in the model, as the large phase shifts at high
frequencies are underestimated.

Most variations in kernels had minimal effects on the
accuracy of the kernel estimates. A sensitivity analysis
was performed by varying 5 parameters that were used to
generate kernels: absolute phase, latency, excitatory width,
inhibitory width, and inhibitory strength. Phase was given
by ϕ0 + Lω, where ω is temporal frequency, ϕ0 is abso-
lute phase and L is latency, and amplitude was given by
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Fig. 2. Convergence and reliability. A model kernel, shown in black, was used
to generate responses to Gaussian white noise inputs, with noise added to the
responses. Estimates of first-order kernel phase and amplitude were obtained
over a range of temporal frequencies from 5 s trials. Impulse responses were
computed from the frequency-domain results. (A) Estimates are shown after
each of the first 10 trials, as averaging accumulated. The first trial is in bright
green, and subsequent trials are shown with increasingly blue traces. (B) The
means and standard errors for these 10 trials are shown in red. A subset of the
phase and amplitude points is shown here to reduce overcrowding in the plots.

e−1/2(ω/Ew)2 − Ia e−1/2(ω/Iw)2
, where Ew is excitatory width, Iw

is inhibitory width, and Ia is inhibitory amplitude. Ew varied
between 4 and 20 Hz, Iw varied between 0.1 Hz and Ew − 2 Hz,
Ia varied between 0.05 and 0.99, absolute phase varied over 1
cycle, and latency ranged from 30 to 200 ms. Sample size was
2000 random kernels. The accuracy of the estimates was eval-
uated by computing the correlation between the model kernel
and its estimate; specifically, the impulse response functions
between 20 and 500 ms were compared to generate an esti-
mate accuracy index. Correlation coefficients between estimate
accuracy and each of the 5 parameters were 0.05 for absolute
phase, −0.67 for latency, −0.47 for excitatory width, −0.28 for
inhibitory width, and −0.17 for inhibitory amplitude. As either
latency or excitatory width increased, estimate accuracy deteri-
orated significantly (P < 0.001, Pearson correlation test; Fig. 4).
Kernels with both large Ew and L were poorly predicted. No
significant correlations were seen for the other 3 parameters.
Increases in the slope of the phase vs. temporal frequency rela-

tion, that is, the latency, caused estimates to deteriorate because
the stimulus/response correlations shifted to attenuated levels
of the Gaussian envelope of corresponding wavelets, and to
neighboring wavelets in time, losing the connection that was
assumed between the phases of stimulus and response wavelets
at the same position in time. That is, the localization inherent in
time–frequency analysis underlies this defect (which could be
corrected with more complicated analyses). The effect of exci-
tatory width is related to this, because the effect of latency is felt
at high frequencies, which are emphasized more as excitatory
width increases. In real cells, there is a tradeoff between these
two parameters, as cells tuned to higher frequencies tend to have
shorter latencies. In particular, such cells have latencies closer
to 50 ms, where the wavelet reconstructions remained accurate.

The estimate accuracy measure is particularly sensitive to
high frequencies. This can be shown by looking at the corre-
lation between estimate accuracy and the errors in the various
frequency-domain parameters. Estimates were computed for a
set of 100 random kernels for each of 11 values of the mother
wavelet parameter ω0. The estimate accuracy measure was then
compared to the errors in each of 6 parameter estimates: ampli-
tude (original kernels always had an amplitude of 1, but estimates
could vary), inhibitory amplitude, excitatory width, inhibitory
width, latency, and absolute phase. The only significant corre-
lations were found between estimate accuracy and the error in
the estimation of the Ew parameter (r = 0.81, averaged across
ω0 values between 5 and 15; the positive correlation is because
the errors in Ew are consistently an underestimate of the actual
value). That is, most of the errors in the estimation of the impulse
response functions could be attributed to poor estimates at high
frequencies.

The estimate accuracy measure improves as ω0 increases,
though not monotonically. Fig. 5 illustrates this dependence.
One should think of this parameter as reflecting the localization
in the analysis, with increasing values meaning less localization.
As the number of cycles in the envelope increases, the envelope
must enlarge at a given actual frequency. In the limit of large val-
ues, the wavelet analysis is no longer localized, and becomes a
Fourier analysis. An oscillation occurs across even and odd val-
ues. As ω0 increases, estimates at low frequencies are no longer
computed. I chose a value of 5 for the rest of the work here
in order to capture low frequency behaviors. This choice sacri-
fices accuracy as evaluated by the estimate accuracy measure,
but localizes the analysis. Choosing estimate accuracy to judge
the accuracy of estimates therefore biases the results against the
wavelet method.

Real responses contain not only the signal evoked by the stim-
ulus, but additional influences from other inputs (see below)
and intrinsic activity. I modeled these influences as additive
noise, so that the response r is determined by both the effect
of the system kernel k on the stimulus s, and random noise ν:
r = k⊗s + ν. These responses were correlated with the stimuli
using the wavelet analysis, and the estimated impulse response
was compared to the model impulse response by computing
their correlation between 20 and 500 ms. As the noise level
grows, estimates should deteriorate. Fig. 6 plots the estimate
accuracy for the wavelet analysis after 100 iterations against the
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Fig. 3. Estimates of different kernels. Six model kernels are shown in black, differing only in absolute phase, which ranged from −0.25 to +0.25 c. (A) Phase vs.
temporal frequency. (B) Amplitude tuning. (C) Impulse response functions. Estimates are shown in red, after 10 5 s trials for each estimate. Stimuli were Gaussian
white noise, and responses were simple convolutions of the stimuli with the impulse responses.

signal-to-noise ratio. Parameters of model kernels were varied
randomly, as described above. The signal-to-noise ratio is the
ratio of the root mean square magnitude of k⊗s over 5 s to the
root mean square magnitude of the added noise, which was var-
ied. Estimates remained accurate until the signal-to-noise ratio
dropped below 0.1. Data were fit with a Naka–Rushton func-
tion, 0.5*a(1 + tanh(b*log(x/c))), where a is the saturation level,
b reflects the rate of rise, and c is the signal-to-noise ratio at half-
saturation. For white stimuli (red curves), the parameter values

Fig. 4. Joint dependence of the accuracy of kernel estimates on excitatory width
and latency. Estimate accuracy is plotted with a gray scale, binned as a function
of the excitatory width parameter and the latency parameter.

for the best fit were a = 0.93, b = 1.8, c = 0.008. As discussed
below, cells are normally tested with multiple stimuli presented
simultaneously at different locations. Responses evoked by stim-
uli at one location appear to be noise when considering other
locations. Resistance to noise is therefore an important property
of an analysis technique.

Compared to the conventional correlation method, the
wavelet method converged more rapidly, but did not achieve
as much accuracy. The curves in Fig. 7 show the average cor-
relations between the predicted and actual impulse response
functions for each method as a function of the number of 5 s
trials. Correlations were computed for different amounts of addi-
tive noise. When noise was added to the responses, the wavelet
method was more accurate over the early iterations, but the stan-
dard correlation technique did better eventually, as well as when
little noise was present. For low signal-to-noise ratios, as illus-
trated in Fig. 7 with the 0.125 level (purple traces), the wavelet

Fig. 5. Accuracy vs. localization. Estimate accuracy, the correlation between
model and estimated impulse response functions, was calculated for 100 random
kernels for each of 11 values of theω0 parameter. Means and their standard errors
are shown.
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Fig. 6. Resistance to noise. Predictions of model impulse response functions were evaluated by the estimate accuracy measure. Noise was added to the responses after
convolving the stimulus with the kernel. As noise levels increased, the signal-to-noise ratio and the estimate accuracy declined. Model kernels (N = 221) were chosen
randomly, and estimates were obtained from 100 iterations of 5 s trials. White stimuli generated red markers, and natural stimuli produced points marked in blue. In
(A), the additive noise was white. In (B), for the natural stimuli the additive noise was also natural. Curve fits to each data set are shown as solid traces. Parameter
values (saturation level, rate of rise, half-saturation signal-to-noise) for these fits were: (0.93, 1.8, 0.008) for white/white, (0.88, 1.5, 0.027) for natural/white, and
(0.89, 1.4, 0.016) for natural/natural.

Fig. 7. Convergence and accuracy. Noisy responses to stimuli passed through
different kernels were correlated with the stimuli using either conventional corre-
lations (dotted traces) or wavelet-based correlations (solid traces). The accuracy
of the kernel estimates was averaged over a set of 100 random kernels for each
of 100 successive iterations. Six different signal-to-noise ratios were tested, as
indicated by colors. Averages were compiled over the same 100 random kernels
for each trace.

method was more accurate even beyond 40 iterations. The stan-
dard method attempts to “fit” the noise (Willmore and Smyth,
2003), as is especially obvious in the impulse response at late
times (Fig. 12C). The amplitude of the additive noise had no
effect on the asymptotic accuracy of the estimates, and had
relatively little impact on the initial estimates for the wavelet
method (when the signal-to-noise ratio was 2 the results were as
good as the no-noise case). In summary, wavelet reverse correla-
tions converge rapidly, are tolerant of noise, but contain intrinsic
approximations that reduce their accuracy. Realistic situations
with neuronal data contain noise and are often limited in the
amount of data available, as noted below for several examples.
Although the asymptotic accuracy is slightly lower with the
wavelet method, the difference is minor, and is compensated
by the more rapid convergence.

3.2. Nonwhite stimuli

The wavelet technique normalizes the spectra of the stimuli
effectively. Fig. 8 shows an example where natural noise stimuli
were used. That is, the stimulus on each trial was generated
from the inverse Fourier transform of an amplitude spectrum
given by 100/(1 + ω) and a random phase spectrum. The wavelet
transform of this stimulus in Fig. 8C can be compared with
the white stimulus in Fig. 1D. Even though these stimuli were
dominated by low temporal frequencies, only a few iterations
(the illustrated case is the result of 10 iterations, that is, 50 s)
were needed to obtain a good estimate of the model kernel.
No changes were made to the calculations to enable estimates
with arbitrary stimuli. When the stimulus was deprived of some
frequency range, estimates deteriorated, but low amplitudes such
as seen for high frequencies in Fig. 8 sufficed to maintain good
predictions.

I compared the accuracy of estimates made with white and
natural stimuli. Over 50 randomly chosen kernels, predictions
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Fig. 8. Nonwhite stimuli. The test stimuli were natural noise samples, as illustrated in (A) and in (C) by its amplitude spectra across the trial. The response to this
trial is shown in (B). The predicted impulse response is shown in (D), along with the model kernel, which is the same as that used in Fig. 1.

made with white stimuli had an accuracy of 0.98, as opposed
to 0.96 with natural stimuli. This difference between white and
nonwhite stimuli was significant (t = 4.3, P < 0.001), and was due
to the weakness of the predictions at high frequencies for natural
stimuli. The main finding, however, is that predictions made
with natural stimuli are accurate. Predictions calculated with
natural stimuli deteriorated more quickly in the presence of noise
than did those from white stimuli (Fig. 6A). The half-saturation
signal-to-noise parameter shifted more than an octave higher.
This result is expected because the measure of signal-to-noise
used here averages across frequencies, but for natural stimuli the
noise has especially strong impact at high frequencies because
the signal is weak there. In the situation where multiple positions
are tested simultaneously (see below), when testing with natural
stimuli the added noise will also be natural, as it consists of
responses to the natural stimuli from other positions. In this case
(Fig. 6B), less difference was observed between the white and
natural stimuli in the presence of noise. The half-saturation point
shifted by one octave. The additive noise was strongest at low
frequencies, where the stimulus was strongest, and therefore did
not outcompete the stimulus at higher frequencies as in Fig. 6A.

3.3. Nonlinearities

A full discussion of how wavelet correlations are used to
estimate nonlinearities is beyond the scope of this report, but
it is worth illustrating how first-order kernels can be estimated
when subjected to static nonlinearities, that is, a nonlinearity
that does not alter timing. Many static nonlinearities preserve

a monotonic input–output relationship, and therefore a strong
linear component. A basic model for neuronal filtering involves
a linear filter followed by rectification, since neurons do not
respond with negative firing rates. For this model, the wavelet
technique yields the linear filter, as shown in Fig. 9A. Half-
squaring, meaning squaring the response after rectification, does
not interfere considerably with the kernel estimate (Fig. 9B). As
expected, full squaring eliminates the linear component that is
estimated by the first-order kernel (Fig. 9C).

3.4. Non-stationary systems

The method used here performs the division of response
by stimulus prior to averaging, 〈R/S〉, where S and R are the
wavelet-transformed stimulus and response functions of fre-
quency and time, and the average (denoted by 〈〉) is taken over
time. This does not optimize kernel estimates in the sense of
minimizing the error between the actual and estimated kernels
(Fig. 7). For stationary systems, where the kernel does not vary
over time, an alternative method using the wavelet transform
is to compute 〈RS*〉/〈SS*〉 as in the conventional spike-based
method. This method was superior to the method where the
division is performed first (Fig. 10, data fall mostly above the
diagonal), with the advantage increasing with increasing noise
levels. However, both methods performed well for kernels with
short latencies and when signal-to-noise was high.

Some systems vary in their temporal properties because of
stimulus or response history, or because of external influences.
For instance, adaptation shifts timing in a highly specific manner

Fig. 9. First-order kernels estimated from linear/nonlinear models. The predictions are shown in red, with the model kernel in black. The nonlinearity that followed
the linear kernel is shown in the insets. (A) Responses were given by max (0, 2 k⊗s) where k is the linear kernel and s is the stimulus, with ⊗ denoting convolution.
This is simple rectification. (B) Responses were generated by max (0, 2 k⊗s)2. This is known as half-squaring. (C) Responses were (2k⊗s)2, full squaring.



Author's personal copy

A.B. Saul / Journal of Neuroscience Methods  168 (2008) 450–464 459

Fig. 10. Averaging methods. Accuracy of kernel estimates was measured for
two methods of computing the kernels using wavelet transforms. The horizontal
axis shows results using the method used elsewhere in this paper. The vertical
axis averaged the stimulus-response product, then divided by the stimulus power.
Over 100 random kernels, with a signal-to-noise ratio of 0.055, the regression
line (solid line) had an intercept of 0.35 and a slope of 0.64, r = 0.85.

in visual cortical neurons (Saul, 1995). For these non-stationary
systems, it can be inappropriate to average over time. The
wavelet method used here is easily modified to handle this case,
by computing the quotient R/S at each time point, without aver-
aging. The kernel estimates at each time can be compared across
time in various ways (as shown in Fig. 15), including projecting
them into subspaces that can reveal different inputs to the sys-
tem, as in visual cortical complex cells (Ringach et al., 1997;
Touryan and Dan, 2001; Schwartz et al., 2002; Touryan et al.,
2002; Rust et al., 2005). In short, averaging can be avoided, and
stimulus-response correlations can be derived over short time
samples.

To illustrate the simplicity of the wavelet correlation analysis
on non-stationary systems, Fig. 11 presents an example where
two different kernels are applied to the stimulus during each

trial. For the first 2.5 s, kernel1 (solid red trace in (A)) was used
to generate responses, and during the final 2.5 s of each trial, ker-
nel2 (solid green trace in (A)) was used. The quotient between
response and stimulus after wavelet transformation is shown
in (B) (amplitude) and (C) (phase). This was computed with-
out averaging over time during each trial. The time–frequency
data were averaged across 100 trials. The change that occurs
at 2.5 s is obvious in both of these plots, as the two kernels
were chosen to be dissimilar, somewhat orthogonal. Kernel esti-
mates are thus obtained at each of the 800 points in time. I
performed some slight averaging over time by computing the
mean of the complex values across 5 bins, which is 31.25 s,
although this is not necessary. For each of the 160 remaining
time points, the frequency-domain data were inverse Fourier
transformed to obtain a real-valued impulse response function.
For times between 0 and 625 ms, those 160 impulse response
functions were then assembled into a matrix, with each row of
the matrix one of the impulse response functions. A standard
form of principal components analysis, singular value decom-
position, provided orthogonal components that are similar to
the original kernels (dotted traces in (A)). The estimates devi-
ate from the model kernels because the model kernels are not
actually orthogonal. In the general case, additional methods are
used to project the 160 impulse responses into a subspace, where
they often tend to cluster around the actual kernels in a structured
way across time (in this case, the two halves of the trial). For
visual cortical complex cells, clusters are often observed in rough
antiphase along some direction in the subspace, corresponding
to the overlapping ON and OFF responses.

3.5. Neuronal data

Cells in the lateral geniculate nucleus (LGN) and primary
visual cortex (V1) were tested with various types of visual
noise stimuli. Since we no longer have a model to compare
to the results of the wavelet analysis, we compare different

Fig. 11. Non-stationary system. During each 5 s trial, the response was given by the stimulus convolved with kernel1 (solid red trace in (A) for the first 2.5 s, then
with kernel2 (solid green trace) for the last 2.5 s. The wavelet correlation was performed without averaging across time during each trial, producing the amplitude
and phase plots in (B and C). These frequency-domain data were averaged over 5 time bins (31.25 ms) and inverse transformed for each bin to generate a set of
impulse response functions. Singular value decomposition of the matrix formed from those impulse responses provided the estimates shown (dotted traces in (A)),
as the first two eigenvectors. The second kernel (green) had a long latency, which is reflected in the more rapid change in phase with frequency during the second
half of the trial in (C). Latencies were 50 ms and 110 ms, absolute phase values were −0.15 and 0.1 c, and kernel2 was tuned to lower frequencies than kernel1. This
caused its responses to bleed into earlier times at low frequencies.
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techniques. First-order kernels were estimated with both con-
ventional spike-triggered techniques and wavelet correlations.
Rather than the single-input system considered above, the neu-
ronal data were obtained with multi-input stimulation. That is,
each of many positions across the receptive field was indepen-
dently tested simultaneously. Because activity can be evoked
from stimulation at one position while stimuli are also pre-
sented at another position, spurious correlations can occur. If
the contrast of the stimulus for one of these spurious correla-
tions is extremely small, the division of the response by the
stimulus yields an especially large value. Many techniques can
be employed to eliminate these artifacts. I used median filter-
ing, where amplitudes that exceeded one standard deviation
above the median over the surrounding 1000 ms were reset to the
median value. This extra computation did not noticeably affect
the kernel estimates illustrated above, because artifacts rarely
occurred. However, the estimate accuracy when using median
filtering was slightly lower than if median filtering was not used
(0.982 vs. 0.987, t = 8.8, N = 100, P < 0.001).

Single neurons in LGN and V1 of awake behaving monkeys
were isolated, and tested with noise stimuli. The stimuli con-
sisted of bars arranged in either a one-dimensional row across
the receptive field, with the bars oriented optimally, or a two-
dimensional grid that covered the receptive field. On each frame
(i.e. at 160 Hz), or on every other frame (80 Hz), each bar’s
luminance and/or color was set independently of the other bars.
The temporal modulation applied at each position could be
chosen from several types, such as binary (bright or dark) or
ternary (bright, dark, and background) or Gaussian white noise,
or natural noise (with correlations between the luminance across
successive frames, but still without spatial correlations). On each
5 s trial, a random sequence was chosen based on an initial seed
for the random number generator. I used sets of 10–20 seeds,
with 3–10 repetitions of each sequence over the run. These rep-
etitions were used in order to enable testing of reproducibility
of responses to the random sequences. Spikes were timed with
high precision, but added to histograms with 6.25 ms bins.

To validate the wavelet technique, I show examples of com-
parisons between spike-based (i.e. normalized spike-triggered
averages, computed by correlating responses with stimuli in
the frequency domain) and wavelet-based correlations for neu-
rons stimulated with these noise patterns. An LGN cell that was
excited by blue stimuli in its receptive field center, and inhibited
by yellow stimuli, is illustrated in Fig. 12. It was tested with
an array of square bars, with the color on every other frame
chosen from a uniform distribution across the monitor’s RGB
space. That is, the color consisted of a trio of values that each
ranged between 0 and 255, with (0, 0, 0) being black, (255, 255,
255) being bright white, (255, 0, 0) being bright red, etc. At
each position, responses to each of the monitor’s guns (R, G,
and B) were derived separately, applying both a conventional
spike-based reverse correlation method and the wavelet corre-
lation method. The maps in Fig. 12A show the red, green, and
blue responses as a function of space at the peak response time
of 37 ms. The black areas in the middle of the red and green
maps indicate that the cell responded when the red and green
guns were given low values. This is equivalent to saying that the

cell was suppressed by yellow stimuli, or that it responded to
the offset of yellow stimuli.

Fig. 12B provides more detailed maps, showing the time-
course of the responses at each position. The position with the
strongest peak response is highlighted with colors. Downward
on these traces indicates that responses occurred to darker val-
ues. The small responses to bright blue can be glimpsed in the
plot on the right. The vertical scale bars vary in height between
these 3 plots, with the green map having the highest amplitudes,
followed by the red then the blue plots. This is primarily caused
by the fact that the green monitor phosphor emits many more
photons than the red and blue phosphors for the same RGB
value. In particular, the short-wavelength cones that presumably
excite this cell are relatively weakly stimulated by the blue gun
compared to how the red and green guns stimulate the medium-
and long-wavelength cones (Horwitz et al., 2005).

The main point is that the kernel estimates are structured
in space and time as expected. Strong responses were evoked
only from the receptive field center, where consistent timing
was observed over just a few pixels. The rest of the tested posi-
tions showed only weak responses. Spurious correlations were
avoided by median filtering without sacrificing the ability to see
the valid correlations.

The maps in Fig. 12A and B were derived using wavelet-
based correlations. Fig. 12C illustrates the spike-triggered
average responses at the peak position (the one highlighted
by colors in (B)). The corresponding wavelet-based impulse
responses are shown in (D). These curves are similar to each
other (as were the responses at all positions), showing that the
cell had sustained OFF responses to red and green, and a lagged
ON response to blue. The spike-based profiles have DC off-
sets that were explicitly eliminated during the wavelet-based
calculations. Eliminating this offset and smoothing the spike-
based curves makes them resemble the wavelet-based curves
more closely. In particular, the timing is almost identical for the
predictions of these analysis methods.

The wavelet method normalizes the stimulus temporal
spectrum, as illustrated in Fig. 8. This is especially clear with
real data. Testing cells with natural stimuli that have spectra
that fall off in amplitude with increasing frequency can cause
problems for conventional analysis methods (Baddeley et al.,
1997; Gallant et al., 1998; Smyth et al., 2003; Theunissen et
al., 2000, 2001; Ringach et al., 2002; Willmore and Smyth,
2003). Fig. 13 compares impulse responses derived either
from wavelet correlations or from spike-based correlations.
Two successive runs were obtained from the same cell with
all parameters identical except for the temporal statistics
of the stimulus. In one run, luminance was modulated in a
ternary white sequence, and in the other run it was modu-
lated in a natural sequence. The particular sequence chose
the value of luminance based on the 2 previous values:
val[n] = 0.6*val[n − 1] + 0.15*(val[n − 1] − val[n − 2]) + 0.1*u
where u is a uniformly distributed random value between −1
and 1. Contrast was then enhanced by applying a sigmoidal
function to the value.

The parvocellular LGN neuron in Fig. 13 gave sustained OFF
responses, with a latency to peak of 42 ms. The two analysis
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Fig. 12. Comparison of kernels estimated by standard spike-based reverse correlation and wavelet correlation. Responses to red, green, and blue stimuli from a
Blue-ON cell in awake monkey LGN are shown, computed from spike-triggered averages (C) and from wavelet correlations (A, B, and D). Slices of the data at 37 ms
are shown in (A), with both the vertical and horizontal axes spanning 1◦. Impulse response functions derived from the wavelet method are shown for each position
and color in (B). Colored traces are from the pixel with the strongest response. Impulse responses from this position are shown magnified in (C and D). The scaling
on the vertical axis has units of spikes per second per full range of luminance modulation for each color, with negative values corresponding to decreased luminance.
This run was 79 trials long, or 395 s.

methods yielded almost identical results for the ternary white
noise (red and blue solid traces in Fig. 13) as well as for the
natural noise (green and black dashed traces). The correlations in
the stimulus were normalized, and both methods gave estimated
kernels that closely resemble those obtained from white noise.

As another example, consider a V1 neuron tested with spa-
tially one-dimensional noise stimuli. Optimally oriented bars
positioned at 16 points across the receptive field were modulated
either with a binary white sequence or the same sort of natural
sequence as described above. This cell was direction selective,
and showed some spatiotemporal orientation corresponding to
this property. The maps in Fig. 14 show kernels as a function of
space (horizontal axis) and time (vertical axis). Panels (A and B)
show the results from the binary white noise run. Similar results
were obtained with the two analysis methods. For the natural
noise run in (C and D), the spike-based method gave noisier
results, and did not pick up the portion of the kernel around −10
minarc. The wavelet method, however, produced a clear, well-
oriented map with at least as good resolution as seen in the white
noise maps.

Many systems are not stationary. Kernels can vary over time
because of external events, for example. The wavelet method
facilitates the analysis of such event-related behaviors. An exam-
ple is how visual receptive field kernels vary around saccades.
Even while fixating, small saccades are made, and I asked how
timing in LGN cells varies with respect to when saccades occur
(testing theoretical predictions such as in Dong et al., 2003). This
is addressed by averaging the ratio of the wavelet-transformed
response and stimulus as a function of time relative to each
saccade (Fig. 15A and B). Averages were computed for brief
time intervals at different points around saccades. Kernels were
then derived at each point in time around saccades (Fig. 15C).
The phase plot in Fig. 15A contains an obvious break near 4 Hz
around the time of saccades, and phase values before and after
saccades differ from each other at some frequencies. This is
reflected in the impulse response functions (Fig. 15C) that shift
in phase across the saccade. Far from the times of saccades
(±0.9 s), the impulse responses are similar to each other. Just
before saccades (−0.1 s), the impulse response degenerates, sug-
gesting that the effect is not purely due to stimulus movement
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Fig. 13. Impulse response functions derived from spike-based and wavelet-
based correlations. A parvocellular LGN neuron was tested with ternary white
noise and natural noise in separate runs. The illustrated profiles were measured
at the pixel with the strongest responses, i.e. the receptive field center. These
impulse response functions were normalized to the same lowest point, which
occurred at 42 ms in all cases. The ternary run had 24 trials, and the natural run
had 43 trials.

Fig. 14. Comparing spike-based and wavelet-based analyses. A direction selec-
tive V1 cell was tested with binary and natural noise in consecutive runs. These
were each analyzed with either spike-based reverse correlation or with wavelet
correlations. These maps show space on the horizontal axis and time on the
vertical axis, with cold colors representing dark-excitation and warm colors
bright-excitation. (A) Binary noise analyzed with spike correlations. (B) Binary
noise analyzed with wavelet correlations. (C) Natural noise analyzed with spike
correlations. (D) Natural noise analyzed with wavelet correlations. The binary
noise run had 24 trials and the natural noise run had 36 trials.

Fig. 15. Saccade-triggered averaging. The ratio of response to stimulus after
wavelet transformation was accumulated as a function of distance in time from
each saccade. The pixel with the strongest response from an LGN cell’s receptive
field was used for these temporal measurements. The stimulus was natural noise,
as in Fig. 13. Phase (A) and amplitude (B) of the kernels are shown as functions
of time from saccades (horizontal axis) and temporal frequency (vertical axis).
Color scales are as in Figs. 1, 8 and 11. (C) Impulse response functions averaged
over 200 ms intervals at a series of distances in time from saccades. The numbers
at the left give the center of each averaging interval, in seconds. The run had 32
trials.

on the retina. After the saccade (0.1–0.7 s), the second phase of
the impulse response dominates. Again, this does not reflect
movement across the retina, since during most of the times
involved (e.g., 200–400 ms after saccades for the +0.3 s case) the
eyes were nearly stationary, and small retinal movements were
compensated by moving the stimulus to match. Although sim-
ilar calculations could be made by computing spike-triggered
averages contingent on distance from saccades, the wavelet
method is well-suited to these sorts of analyses that depend on
time.

4. Discussion

Another method for estimating receptive field structure is
described here. The wavelet transform isolates, in time, the
spectral components of the stimulus and response that are to
be correlated. Arbitrary stimuli can be applied, and response
noise, including that evoked by multi-input stimulation, is han-
dled well. Perhaps most importantly, results are obtained with
relatively limited amounts of data. The disadvantages include
inaccuracy of the estimates due to approximations made by not
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localizing in either the frequency domain or the time domain,
as well as long computation times. It typically takes about 3
times as long to compute the wavelet correlations compared to
the spike-based correlations.

The wavelet transform provides a representation of its input
that is convenient, but that can be problematic in certain respects.
For instance, input at a single frequency is spread out over neigh-
boring frequencies. The representation is redundant, which is
useful numerically but makes theoretical analysis less tractable.
For stimuli that are somewhat sparse in the frequency domain,
conventional methods require additional techniques to avoid sin-
gularities, but this is built into the redundancy of the wavelet
method.

With conventional reverse correlation, normalization is
required when using nonwhite stimuli, and regularization is
sometimes applied to reduce the noise that is evident in the exam-
ples above. Typically, physiologists have not routinely applied
either technique when performing reverse correlation. If algo-
rithms are modified to include normalization and regularization,
accuracy of kernel estimates can exceed that of the wavelet
method, with faster computational speeds. The wavelet tech-
nique converges more quickly, and is easy to implement in a
general form. It can also be used to derive non-stationary system
behavior in a straightforward way. An example where this could
be useful is in determining the behaviors of dynamic synapses,
investigating the effects of synaptic depression and facilitation
under physiological conditions.

The wavelet method can be applied to analog data. The sim-
ulations shown in this report used analog stimuli and responses.
A real-world example is in measurement of multifocal elec-
troretinograms (mfERGs). Recordings of retinal responses are
obtained from a corneal electrode. The mass responses from the
whole retina are then decomposed to reveal localized function
across the retina. Multifocal ERGs have been obtained primar-
ily with m-sequences (Sutter, 2001). Nonwhite stimuli can be
applied as well, and analyzed with wavelet correlations.

In summary, a simple technique permits rapid estimation of
first-order kernels from measurements of responses to arbitrary
stimuli. The stimulus and the response are both transformed into
their instantaneous frequency-domain representations at each
point in time, via a wavelet transform. The kernel is then obtained
by dividing response by stimulus, filtering the results to elimi-
nate artifacts, and averaging across the time samples. Working
in the frequency domain, and in particular computing the phase
differences between response and stimulus, provides accurate
reconstructions with little effort. Nonstationarity is managed
by using the multiple time samples. Physiologists can easily
perform system identification in this manner across a broad
spectrum of preparations.
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